EE149 Project Final Report: [BLOCK]
Emily Chen, Stephanie Ho, Johnny Shen
EECS149/249A - Fall 2014

Motivation

Time at home and with loved ones should not be spent
clutching onto one’s phone, waiting for the newest
notification to arrive and having to wake the phone screen
to find out what they are. We want a product that provides a
simple and aesthetically pleasing way of being notified of
incoming alerts on our phones so we can choose to
respond to only those notifications that we deem important.

Project Vision

[BLOCK] is a simple, unobtrusive at home notification hub
so that users can easily tell what new notifications are
currently on their mobile device instead of constantly
referring to their phone to see them. This project can model
the arrival of different notifications and various sensor
inputs, from both the smartphone and on [BLOCK] itself,
and its reaction to these inputs in a finite state machine.
The goal will be to accurately display notifications from your
personal linked devices in real-time, interact and control
with [BLOCK] through gestures, and adjust the [BLOCK]'s
overall color scheme depending on the type of notification
to create a visually appealing notification hub for your
home.

Figure 1. The finished look of [BLOCK]

The product consists of a laser-cut plywood base which
houses the Arduino Mega, BluetoothLE breakout, and
half-size breadboard. Inside the white acrylic base, we have
a 16x32 RGB LED screen against the front panel and
NeoPixels lined along the rest of the inner body to create an
ambient glow effect. Along the top, there are ultrasonic
sensors to detect swipe gestures.

System Block Diagram

Y1)
Notifications
Inputs Bluetooth Ultrasonic Sensors
Module

Y
System

A4
Outputs

RGB Panel NeoPixel LEDs

Figure 2. Block diagram showing the inputs and outputs of
our system

The inputs of [BLOCK] include incoming notifications to
your Android phone, ultrasonic sensor data, and Bluetooth
Low Energy (BLE) data packets sent from your Android
phone. Further software details are discussed below in the
“Software Components” section.

The outputs of [BLOCK] include actuating both the RGB
LED Panel Display and the NeoPixel LEDs. Based on the
notifications received by your smart phone, the Arduino
Mega will change the NeoPixels and RGB display
accordingly. For example, if one receives a Facebook
notification, the NeoPixels will demonstrate a blue light
show to match the colors of Facebook, and the RGB
display will read “Facebook”, as shown below in Figure 3.

Figure 3. Receiving Facebook and SnapChat notifications

Hardware Components

Table 1 below lists out the hardware components integrated
in [BLOCK]. We have categorized the list into components
required for [BLOCK]'s inputs, system, outputs, power, and
other.

Components
Inputs - Ultrasonic sensors HR-SR04
- Bluetooth Low Energy module nRF8001
System - Arduino Mega 2560
Outputs - Neopixel LED strip
- 16x32 RGB LED matrix panel
Power - 5V/10A power supply
Other - Half-size breadboard
- 2.1mm female DC power plug
- Toggle switch

Table 1. List of Hardware Components

Figure 4 and 5 below show the insides of [BLOCK], and
how all the components were housed in the wooden base
and acrylic box.

Figure 4. Back view of [BLOCK]; female DC power plug,
toggle switch, NeoPixels, and wiring are visible

T;"""H‘ v i

|

Figure 5. Work in progress - wired hardware components

Software Components

Software components include the development of our
Android mobile application and Arduino program that
accepts inputs, and actuates our outputs. Figure 6 below
exhibits [BLOCK]’'s companion application that facilitates
the Bluetooth connection and alert transmission.

The Android Application

[zl |

Getting started...

3001 Y L) . 5:22pu

O sor

[B]

Select [Block] to connect;

[Block]

CF25:920D:E4:60
Unknown device
73.0F SR EF.CHAE
Unknown device
30 EA

Unknown device
308CFB95ID6C

Figure 6. The [BLOCK] Android Application.

System requirements: Because [BLOCK] requires running
BluetoothLE and a NotificationListenerService in the
background, devices would need to have at least Android
4.3 (API 18+) to be compatible.

Description: Upon launching the Android Application, the
user will be prompted to turn on Bluetooth if it is not already
on. The app will then scan for available Bluetooth LE
devices. Once the user chooses “[Block]”, a connection is
established, and the user can navigate away from the app if
s/he chooses. When a notification is posted to the Android
device, it will be pushed to [BLOCK]'s stack of notifications.
When the user swipes, selects, or otherwise removes a
notification from the Android device’s status bar, it will
correspondingly be removed from [BLOCK].

The Arduino Program

Description: When the Arduino board is turned on, it sets
up and configures all its tools, most notably the BLE chip.
Then it enters the main program loop, where it handles
gesture detection, updates the displays, and awaits
Bluetooth data interrupts. The Finite State Machines in
Figures 8-10 give an overview of what the program
achieves, though some redundant transitions are left out to
make them more readability particularly in Figure 10, which
is the largest part of the program.Since the RGB panel and
NeoPixel strips independelty look to the global variable
notifs to grab the details it needs to display that
notification, the role of this central part is to update the
index counter of the current app to display in the array.
Then these light actuators would grab the display
information from notifs[current].name or color.

Performance and Model Analysis

Performance
Notification receive time ~1000ms
Bluetooth connection speed ~200ms
Ultrasonic sensor response time ~20 - 30 ms

per reading

Minimum time to recognize
gesture

4 readings per gesture
= ~80ms

Ultrasonic sensor range ~200 mm

Table 2. Performance Statistics

Reliable Real-time Behavior

From the user’s experience, Bluetooth connection and data
transfer between the Android device and [BLOCK] are
extremeley fast, with little to no discernable latency
between the Android device receiving the notification
update to it appearing on [BLOCK]. Possible delays that
may occur for notifications would arise from Android
device’s data connection, depending on how quickly the
network pushes the notification to the phone. As shown in
Table 2, the performance speeds for all of the time-related
parameters are in the milliseconds, demonstrating fast and
reliable real-time behavior of the system.

Ultrasonic Sensors

Distance vs. Time Response Readings from the Ultrasonic
Sensor

1200

//

W Left Sensor
Right Sensor

600

Time Response (ms)

300

20 40 60 80 100 120 140 160 180 200

Distance (mm)

Figure 7. Average ultrasonic sensor response times
observed by holding a hand between the sensors.

Upon initial inspection of the ultrasonic sensor reading
values, one may be confused as to why the left sensor
seems broken or unresponsive at close range (120mm).
Given that the ultrasonic sensors work by emitting a high
signal and then timing the delay in receiving its response,
there are several possible interpretations to explain these
abnormally low but nonzero readings.

The most probable explanation is that since the right sensor
is sampled before the left, the immediate responses read
from the left sensors could be residue signal from the right
sensor's pulse out that reflected off our experimental
surface and returned to the sensor. This would explain the
left sensor's recovery to perform normally at a more
reasonable range, as it leaves enough time for the residue
noise to dissipate.

To remedy this problem, rather than spread the sensors
further apart which would force the user to swipe across a
wider range in an unnatural way, we adapted our gesture
detection algorithm to ignore the depths of readings and
simply consider the flow of motion acorss the left-right axis
by translating the response times as booleans indicating
whether the sensor has detected an object within a
threshold. Final conclusions on the direction of that object
would be based on its entrance and exit; that is, only the
first and last readings that have detected an object are
considered while everything in between is interpreted as
intermediate motion. Given the high sampling rate of the
sensors, if an object is entering from a certain side, the field
of view or range of the sensors is able to pick it up without
fear of reflection noise.

For example, for a left to right swipe, our algorithm would
look for a pattern like (1, 0) (0, 0)* (O, 1), where each pair is
the (left, right) response time and the middle pair indicating
any number of readings where both sensors are not zero
simultaneously are accepted. This negates the effects of
noise and results in accurate readings 95% of the time with
fast (< 1s) swipe speeds.

Finite State Machines

variables: current, total, notifs| |
BT post(app), displayTime, -
Bluetooth | 57 removeapp) displayNotif | RGB Matrix
Module Panel
Ultrasonic NeoPixel
Sensors right_swipe, LED stri P
lefi_swipe

Figure 8. Relations between the various components.

Here is a high level overview of the logic flow of the
components that make up [BLOCK]. The global variable of
the array containing accumulated notifications is the core
constituent of the program, as it is what tracks which
notifications are active. The current and total variables help
navigate between the active notifications, and are what the
actuators (RGB panel and LED strip) use to display alert
information.

input: lefi, right
output: righ!_swipe: purc, left v right /
left_swipe: pure Jeft A right /

~left “right / right swipe

left ™ right /

Figure 9. FSM of right swipe detection transitions.

Figure 9 models how [BLOCK] will respond to swipe
gestures, specifically right gestures (for ease of
understanding). When a right swipe is initialized or
“detected” from the left sensor, it will enter a “swiping”
mode. If it detects an exit motion on its companion sensor,
it will either register a “right_swipe”. If no exit motion is
detected or if motion is detected on the originating sensor, it
will reset itself.

variables: current, fotal, notifs[]

total == 0~ BT post(app) /
input: right_swipe: pure, left_swipe: pure,

total = 1, notifs.append(app),
BT _post(app), BT_remove(app) current := notifs.indexOfapp),
output: displayNotif: pure, displayTime: pure displayNotif

total == 1~ BT _remove(app) /
total := 0, notifs.remove(app), displayTime

BT _post(app) ~ —notifs.contains(app) / Yight_swipe/
total := total+1, notifS.append(app), current := (current - 1) % total
current := notifs.indexOf{app)

multiple

BT _remove(app) " total == 2/
total := total-1, notifs.remove(app), BT post(app) " notifs.contains(app) /'
current := current % total current = notifs.indexOftapp)

Figure 10. FSM of main [BLOCK] logic updating global
variables for the actuators (some transitions omitted)

The figure above models [BLOCK] behavior at a higher
level. When there are no notifications in its stack, the
product will enter an idle state. Upon receiving a notification
or swipe gesture, [BLOCK] enters a “notify” state. Inside,
there are two substates, single or multiple. In single mode,
it will either wait for a notification “post” or “remove”. On a
“remove”, it will revert back to idle state. On “post”, it will
push the new notification onto the stack and also wait for
swipes in addition to additional post/removes.

Future Improvements

Ticker text : In addition to notifying users of the
apps from which there are notifications, we can
also display the content of the particular
notification.

PCB: Currently, the Arduino Mega, breadboard,
and wiring are all hidden away inside the wooden
platform that BLOCK rests on. Using a PCB can
allow us to do away with the base and create a
sleeker-looking product.

Informative actuators: We can add additional
actuators such as a microphone or speaker to
handle voice calls or notification readouts through
[BLOCK], further reducing the need for one to
physically pick up the phone while connected.
User modes: Can allow the user to choose
between simple notifications mode (as is) or
verbose mode where notification ticker text is also
displayed.

Product Introduction:
Project video demonstrating [BLOCK] in action:
http://youtu.be/QS400v85tpQ

References

1. http://www.kpbird.com/2013/07/android-natificationl
istenerservice.html

2. https://developer.android.com/guide/topics/connecti
vity/bluetooth-le.html

3. https://github.com/adafruit/Adafruit nRF8001

4. https://github.com/adafruit/Adafruit_NeoPixel

5. https://github.com/adafruit/Adafruit-GFX-Library

-5-5_..5-

http://youtu.be/QS4oOv85tpQ
http://www.google.com/url?q=http%3A%2F%2Fwww.kpbird.com%2F2013%2F07%2Fandroid-notificationlistenerservice.html&sa=D&sntz=1&usg=AFQjCNFjSOLTZfGqd5NPyRenvHJ5-Y5oJw
http://www.google.com/url?q=http%3A%2F%2Fwww.kpbird.com%2F2013%2F07%2Fandroid-notificationlistenerservice.html&sa=D&sntz=1&usg=AFQjCNFjSOLTZfGqd5NPyRenvHJ5-Y5oJw
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fadafruit%2FAdafruit_nRF8001&sa=D&sntz=1&usg=AFQjCNFh9HFH-Yc07gvfG8sjoGk7SAyQ4A
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fadafruit%2FAdafruit_NeoPixel&sa=D&sntz=1&usg=AFQjCNFzQbCS05D4jywz5g_xmCMXLiE4Rw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fadafruit%2FAdafruit-GFX-Library&sa=D&sntz=1&usg=AFQjCNGhWWKWGGiG-e3f7XyKpUWEZZGtTg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fadafruit%2FAdafruit_NeoPixel&sa=D&sntz=1&usg=AFQjCNFzQbCS05D4jywz5g_xmCMXLiE4Rw

